

International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

A Common Fixed Point Theorem in Fuzzy Metric Space using Implicit Relation

P Srikanth Rao¹, T Rakesh Singh²

Department of Mathematics, B V Raju Institute of Technology, Narsapur, Telangana, India¹

Department of Mathematic & Computer Science, Aurora's Technological Institute, Telangana India²

Abstract: The aim of this paper is to present a common fixed point theorem in fuzzy metric space using weak^{**} commuting property for six self maps satisfying an implicit relation which generalize and unify the existing results of [3], [6], [7], [8], [9] and [10].

Mathematics Subject Classification: 54H25, 47H10

Keywords: Fuzzy metric space, Weak** commutative mapping, Common fixed point, Implicit relation.

1. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh in 1965. Later manyauthors used the concept of fuzziness in metric space. The idea of fuzzy metric space introduced by Kramosil and Michalek was modified by George and Veeramani [2].Recently in fuzzy metric space concept of R-weakly commuting map, compatible map,semi-compatible map, weak-compatible map etc are introduced and used by several authors. For instance Jungck and Rohades, R. Vasuki, Singh and Chauhan, Singh and Jain etc.

In recent years several authors have generalized commuting condition of mapping introduced by Jungck. Sessa initiated the tradition of improving commutative condition in fixed point theorems by introducing the notion of weakly commuting mapping. Pathak defines weak* commuting and weak** commuting mapping in metric space and proves some theorem. Popa [6] proved theorem for weakly compatible non-continuous m appings using implicit relation. It was extended by Imdad [3] using coincidence commuting property. Jain [9] also extend the result of Popa [7] and [8] in fuzzy metric space.

The main object of this paper is to obtain some common fixed point theorems n fuzzy metric space using "Implict Relaion". Our result differs from all above authors in the following ways:

(1) We have taken six self maps.

(2) Weak** commuting property is used.

(3) Relaxing the continuity requirement completely.

2. PRELIMINARIES

For the terminologies and basic properties of fuzzy metric space readers refer to George and Veeramani [2]. Some other required definitions are as follows:

Weak Commuting:** Two self mappings A and T of fuzzy metric space (X, M, *) iscalled weak** commuting if $A(X) \subset T(X)$ and for any $x \in X$,

 $M(A^{2}T^{2}x, T^{2}A^{2}x, t) \geq M(A^{2}Tx, T^{2}Ax, t) \geq M(AT^{2}x, TA^{2}x, t) \geq M(ATx, TAx, t) \geq M(A^{2}x, T^{2}x, t)$

Remark: If A and T are idempotent maps i.e. $A^2 = A$ and $T^2 = T$ then weak**commutative reduces to weak commuting pair of (A, T).

2.1. A class of implicit relation: Let Φ be the set of all real continuous functions.

F: $(R+)^5 \rightarrow R$ non decreasing in the first argument satisfying the following conditions:

(a) For $u, v \ge 0$, F $(u, v, u, v, 1) \ge 0$ implies that $u \ge v$.

(b) $F\{u,1,1,u,1\} \ge 0$ or $F\{u,u,1,1,u\} \ge 0$ or $F\{u,1,u,1,u\} \ge 0$ implies that $u \ge 1$

2.2. Example

Define $F(t_1, t_2, t_3, t_4, t_5) \ge 20t_1 - 18t_2 + 10t_3 - 12t_4 - t_5 + 1$. Then $F \in \Phi$.

International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

3. MAIN THEOREM

3.1. Theorem: Let A, B, Q, S and T be self mappings of a complete fuzzy metric space (X, M,*) satisfying: 3.1.1. $P(X) \subset AB(X), Q(X) \subset ST(X)$ 3.1.2. The pairs (P, ST) and (Q, AB) are weak ** commutative, 3.1.3. One of P(X), Q(X), AB(X) and ST(X) is a complete subspace of X 3.1.4. For some $F \in \emptyset$, there exist $k \in (0,1)$ such that for all x, y $\in X$ and t > 0, $F\{M(P^2x, Q^2y, kt), M((ST)^2x, (AB)^2y, t), M(P^2x, ST)^2x, t), M(Q^2y, (AB)^2y, kt),$

 $M((AB)^2y, A^2x, t) \ge 0.$

Then P, Q, AB, SThas unique common fixed point in X.

If the pair (A,B),(S,T),(Q,B) and (T,P) are commuting mappings then A,B,S,T,P & Q have a unique Common fixed point.

Proof: Let $x_0 \in X$ be any arbitrary point, as $P(X) \subset AB(X), Q(X) \subset ST(X)$ there exist $x_1, x_2 \in X$ such that $P^2 x_0 = (AB)^2 x_1$ and $Q^2 x_1 = (ST)^2 x_2$. Inductively construct sequence $\{y_n\}$ and $\{x_n\}$ in X such that $y_{2n+1} = P^2 x_{2n}$ $= (AB)^2 x_{2n+1}, y_{2n+2} = Q^2 x_{2n+1} = (ST)^2 x_{2n+2}$, for n = 0, 1, 2, ...Now using condition (3.1.4) with $x = x_{2n} y = x_{2n+1}$, we get $F\{M(P^{2}x_{2n},Q^{2}x_{2n+1},kt),M((ST)^{2}x_{2n},(AB)^{2}x_{2n+1},t),M(P^{2}x_{2n},(ST)^{2}x_{2n},t),M(Q^{2}x_{2n+1},(AB)^{2}x_{2n+1},kt),M((AB)^{2}x_{2n+1},P^{2}x_{2n},(AB)^{2}x_{2n+1},kt),M((AB)^{2}x_$ $t) \geq 0.$ That is $F{M(y_{2n+1}, y_{2n+2}, kt), M(y_{2n}, y_{2n+1}, t),}$ $M(y_{2n+1}, y_{2n}, t), M(y_{2n+2}, y_{2n+1}, kt),$ $M(y_{2n+1}, y_{2n+1}, t)\} \ge 0.$ Using condition (2.1) (a), we have $M(y_{2n+2}, y_{2n+1}, kt) \ge M(y_{2n+1}, y_{2n}, t)$ Thus for any n and t, we have $M\;(y_{n+1}\,,\!y_n\;,\!kt)\;\geq , M(y_n\;,\!y_{n\!-\!1}\;,\!t)$ We shall prove that $\{y_n\}$ is a Cauchy sequence. $M(y_{n+1}, y_n, t) \ge M(y_n, y_{n-1}, t/k) \ge M(y_{n-1}, y_{n-2}, t/k^2) \ge ..\ge M(y_1, y_0, t/k^n) \to 1 \text{ as } n \to \infty.$ Thus the result holds for m = 1. By induction hypothesis suppose that the result holds for m = r. Now $M \; (y_n \, , \! y_{n+r+1} \, , \! t) \; \geq M(y_n \, , \! y_{n+r} \, , \! t\!/2) *$ $M \; (y_{n+1}\,,\!y_{n+r+1}\,,\!t\!/2) \to 1\!*\!1 = 1$ Thus the result holds for m = r + 1Hence $\{y_n\}$ is a Cauchy sequence inX which is complete. Therefore $\{y_n\}$ converges to $z \in X$. Hence its subsequences $\{P^2x_{2n}\}$, $\{(AB)^2x_{2n+1}\}$, $\{Q^2x_{2n+1}\}$ and $\{(ST)^2x_{2n+2}\}$ also Convergence to z

Case I: AB(X) is a subsequence of X. In this case $z \in AB(X)$, hence there exist $u \in X$ such that $z = (AB)^2 u$.

Step I: Put $x = x_{2n}$ and y = u in (3.1.4), we get $F\{M(P^2x_{2n}, Q^2u, kt), M((ST)^2x_{2n}, (AB)^2u, t),$ $M(P^2x_{2n}, (ST)^2x_{2n}, t), M(Q^2u, (AB)^2u, kt),$ $M((AB)^2u, P^2x_{2n}, t)\} \ge 0.$ Taking limit $n \to \infty$, we get $F\{M(z, Q^2u, kt), M(z, z, t), M(z, z, t),$ $M(Q^2u, z, kt), M(z, z, t)\} \ge 0$ That is $F\{M(z, Q^2u, kt), 1, 1, M(Q^2u, z, kt), 1\} \ge 0$ $M(z, Q^2u, kt) \ge 1$ {by (2.1)(b)} Hence $z = Q^2u$ Therefore (3.1.6) $z = Q^2u = (AB)^2u$ Now (Q, AB) is weak** commutative, therefore

International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

 $(3.1.7)M((AB)^2Q^2u,Q^2(AB)^2u,t) \ge$ $M((AB)^2Qu,Q^2(AB)u,t) \ge M((AB)Q^2u,Q(AB)^2u,t)$ $\geq M$ ((AB) Qu, Q (AB), t) $\geq M$ ((ST) ²u, Q²u, t) Hence by (3.1.6), (AB) ${}^{2}Q^{2}u = Q^{2} (AB) {}^{2}u$ (3.1.8) Therefore $(AB)^2 z = Q^2 z$ (8) **Step II:** Put $x = x_{2n}$ and y = z in (3.1.4), we get from (3.1.8) $F\{M(P^2x_{2n}, Q^2z, kt), M((ST)^2x_{2n}, (AB)^2z, t),$ $M(P^2x_{2n}, (ST)^2x_{2n}, t), M(Q^2z, (AB)^2z, kt),$ M ((AB) ${}^{2}z, P{}^{2}x_{2n}, t$) ≥ 0 Taking $\lim n \to \infty$ $F{M(z, Q^2z, kt), M(z, Q^2z, t), M(z, z, t),}$ $M(Q^2z, Q^2z, kt), M(Q^2z, z, t)\} \ge 0$ That is F {M (z, Q²z, kt), M (z, Q²z, t), 1, 1, M (Q²z, (AB)²z, t)} ≥ 0 As F is non decreasing in the first argument, we have $F\{M(z, Q^2z, t), M(z, Q^2z, t), 1, 1, M(z, Q^2z, t)\} \ge 0$ That is M (z, Q^2z , t) ≥ 1 {by (2.1) (b)} $z = Q^2 z$ (3.1.9)Hence $z = Q^2 z = (AB)^2 z$ **Step III:** As $Q(X) \subset ST(X)$, there exist $v \in X$ such that $z = Q^2 z = (ST)^2 v$. Put x = v, y = z in (3.1.4), we have from (3.1.9) F{M(P²v,Q²z, kt),M((ST)²v, (AB)²z, t),M(P²v,(ST)²v, t),M(Q²z, (ab)²z, kt), $M((AB)^2z, P^2v, t)\} \ge 0$ That is F {M (P²v, z, kt), 1, M (P²v, z, t), 1, M (z, P²v, t)} ≥ 0 As F is non decreasing in the first argument, we have F {M (P²v, z, t), 1, M (P²v, z, t), 1, M (P²v, z, t)} ≥ 0 That is M (P²v, z, t) \geq 1 {by (2.1) (b)} $z=P^{\mathbf{2}}v$ (3.1.10) Therefore $z = P^2v = (AB)^2v(P, ST)$ is weak** commutative, therefore $M(P^{2}(ST)^{2}v, (ST)^{2}P^{2}v, kt) \ge M(P^{2}(ST)v, (ST)^{2}Pv, t) \ge M(P(ST)^{2}v, (ST)P^{2}v, t) \ge M(P(ST)v, (ST)Pv, t) \ge M(P(ST)v, t) = M(P(ST)v, t) \ge M(P(ST)v, t) =$ $M(P^2v,(ST)^2v,t)$ Hence by (3.1.10), P^2 (ST) $^2v = (ST) ^2P^2v$ Therefore $P^2z = (ST)^2z$ Combining all the results, we have $(ST)^{2}z = P^{2}z = Q^{2}z$ Put x = Pz and y = z in (3.1.4), $F\{M(P^2Pz, Q^2z, kt), M((ST)^2Pz, (AB)^2z, t), M(P^2Pz, (ST)^2Pz, t), M(Q^2z, (AB)^2z, kt), M((AB)^2z, P^2Pz, t)\} \ge 0$ As (P, ST) is weak ** commutative, therefore $P^{2}(ST)z = (ST)P^{2}z$ and $(ST)^{2}Pz = P(ST)^{2}z$ Hence $F\{M(Pz, z, kt), M(Pz, z, t), M(Pz, Pz, t), M(z, z, kt), M(z, Pz, t)\} \ge 0$ As F is non decreasing in the first argument, we have $F\{M(Pz, z, t), M(Pz, z, t), 1, 1, M(Pz, z, t) \ge 0$ $M(Pz, z, t) \ge 1 \{by (2.1) (b)\}$ Pz = zSimilarly we can show that Qz = z and STz = z and ABz = zHence z = Pz = Qz = STz = ABzThus z is the common fixed point of P, Q, AB & ST

Uniqueness: Let w and z be two common fixed points of maps P, Q, STand AB.

International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

Put x = z and y = w in (3.1.4), we get $F{M(Pz, Q^2w, kt), M((ST)^2z, (AB)^2w, t), M(P^2z, (ST)^2z, t), (Q^2w, (AB)^2w, kt), M((AB)^2w, P^2z, t)} \ge 0$ $F{M(z, w, kt), M(z, w, t), M(z, z, t), M(w, w, kt), M(w, z, t)} \ge 0$ As F is non decreasing in the first argument, we have $F\{M(z,\,w,\,t),\!M(z,\,w,\,t),\!1,\!1,\!M(z\,\,,w,\,t)\}\geq 0$ $M(z, w, t) \ge 1 \{by (2.1) (b)\}$ That is z = wThus z is the unique common fixed point of P, Q, AB and ST. No, we show that z=Tz by putting $x=Tz \& y=x_{2n+1}$ in (3.1.4) and using the commutivity of the pairs (T, P) & (S, T) $F\{M(P^2Tz, Q^2x_{2n+1}, kt), M((ST)^2Tz, (AB)^2x_{2n+1}, t), M(P^2Tz, (ST)^2Tz, t), (Q^2x_{2n+1}, (AB)^2x_{2n+1}, kt), M(Q^2Tz, Q^2x_{2n+1}, kt), M(Q^2Tz,$ M ((AB) ² x_{2n+1} , P²Tz, t)} ≥ 0 Letting $n \to \infty$, we get $F{M(Tz, z, kt), M(Tz, z, t), M(Tz, Tz, t),}$ $M(z, z, kt), M(z, Tz, t) \ge 0$ F {M (Tz, z, kt), M(Tz, z, t), 1, 1, M (Tz, z, t)} ≥ 0 As F non decreasing in the first argument, we have $F{M(Tz, z, t), M(Tz, z, t), 1, 1, M(Tz, z, t)} \ge 0$ $F{M(Tz, z, t)} \ge 1$ by (2.1) (b) Therefore Tz=z Similarly we can show that z=Bz by putting x=x2n & y=Bz in (3.1.4) and using the Commutativity of the pairs (A,B) and (Q,B) $F\{M(P^{2}x_{2n},Q^{2}(Bz),kt),M((ST)^{2}x_{2n},(AB)(Bz),t),M(P^{2}x_{2n},(ST)^{2}x_{2n},t),M(Q^{2}(Bz),(AB)^{2}(Bz),kt),$ M ((AB)²(Bz), P²x_{2n}, t)} ≥ 0 Let $n \rightarrow \infty$ we get, F{M(z, Bz, kt),M(z, Bz, t),M(z, z, t),M(Bz,Bz, kt), $M(Bz, z, t) \ge 0$ $F{M(z, Bz, kt), M(z, Bz, t), 1, 1, M(Bz, z, t)} \ge 0$ As F non decreasing in the first argument, we have $F{M(z, Bz, t), M(z, Bz, t), 1, 1, M(z, Bz, t)} \ge 0$ $M(z,Bz,t) \ge 1$ by (2.1)(b) ABz = z z=Bz implies A(Bz) = z which gives Az=z STz=z implies S(Tz) = z which gives Sz = z Hence z=Az=Bz=Sz=Tz=Pz=Qz is a Unique common fixed point If we take B = T=I in theorem 3.1, we get following result. Corollary 3.2: Let P, Q, A and S self mappings of a complete fuzzy metric space (X, M, *) satisfying: 3.2.1) $P(X) \subset A(X), Q(X) \subset S(X)$

3.2.1) $P(X) \subset A(X), Q(X) \subset S(X)$ 3.2.2) The pairs (P, AQ),(Q,S)are weak** commutative, 3.2.3) One of P(X),Q(X),A(X),B(X) complete subsequence of X 3.2.4) for some $F \in \Phi$, there exists $k \in (0, 1)$ such that for all x, y $\in X$ and t > 0, $F\{M(P^{2}x, Q^{2}y, kt), M(S^{2}x, A^{2}y, t), M(P^{2}x, S^{2}x, t),$ $M(Q^{2}y, A^{2}y, kt), M(A^{2}y, P^{2}x, t)\} \ge 0$ Then P, Q, S, and Ahave a unique common fixed point in X. If we take S=T=A=B=I in theorem 3.1 the conditions (3.1.1), (3.2.2) and (3.3.3) are satisfied trivially and weget the following corollary.

Corollary 3.3: Let A and B be self mappings of a complete fuzzy metric space (X, M, *) satisfying: 3.3.1) for some $F \in \Phi$, there exists $k \in (0, 1)$ such that for all x, $y \in X$ and t > 0, $F\{M(P^2x, Q^2y, kt), M(x, y, t), M(P^2x, x, t),$ $M(Q^2y, y, kt), M(y, P^2x, t)\} \ge 0$ Then P and Q have a unique common fixed point in X. If we take P = I = A = B = T, the identity map on X then we have the following result for two self maps.

Corollary 4: Let Q and S be self mappings of a complete fuzzy metric space (X, M, *) satisfying: 4.1) $Q(X) \subset S(X)$, 4.2) the pair (Q, S) is weak ** commutative,

4.3) S(X) is complete sub space of X,

International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

4.4) For some $F \in \Phi$, there exists $k \in (0, 1)$ such that for all $x, y \in X$ and t > 0, $F \{M(x, Qy, kt), M (Sx, Sy, t), M(x, Sx, t), M (Qy, Sy, kt), M (Sy, x, t)\} \ge 0$ Then Q and S have a unique common fixed point is X

Theorem 5: Let U, V, W, N, L, M be self mapping of a complete fuzzy metric space (X, M,*) satisfying: 5.1) UV(X) \subset L(X), WN(X) \subset M(X), 5.2) the pairs (UV, M) and (WN, L) are weak** Commutative, 5.3) one of L(X), M(X) is a complete sub space of X, 5.4) for some F $\in \Phi$, there exists $k \in (0, 1)$ such that for all x, y \in X and t > 0, F {M (U²V²x, W²N²y, kt),M(M²x, L²y, t), M(U²V²x, M²x, t),M(W²P²x, T²y, kt), M(T²y, U²V²x, t)} ≥ 0 Then UV,L,WN and M have a Unique Common Fixed point more over (U,V),(W,N),(L,N),(M,V) are commuting mappings then U,V,W,L,M,N have a Unique fixed point in X.

CONCLUSION

In this paper we proved Common fixed point theorem in fuzzymetric space using weak** commuting property for six self maps satisfying an implicit relation.

REFERENCES

- [1]. V.H.Badsha., F.Sayyed and N.Gupta, Weak** commuting mapping and common fixedpoint, News Bull. Cal. Math. Soc. 24 (2001), 11-20.
- [2]. A.George and P. Veeramani., On some results in fuzzy metric spaces, Fuzzy Sets and System 64 (1994), 395-399.
- [3]. M. Imdad,S.Kumar and M. S. Khan,Remarks on some fixed point theorems satisfying implicit relations, Radovi Mathematics 11(2002), 135 143.
- [4]. H.K. Pathak, Weak* commuting mapping and fixed points, Indian J.Pure Appl.Math.17(1986), 201-211.
- [5]. H.K.Pathak, Weak** commuting mappings and fixed point (II), J.Indian Acad.Math.15(1993), 106-116.
- [6]. V.Popa, Some fixed point theorems for weakly compatible mappings, RadoviMathematics 10 (2001), 245-252.
- [7]. V. Popa., Fixed points for non- subjective expansions mappings satisfying an implicit relation, Bul. Sitint. Univ.Baia Mare Ser.B Fasc.Mat.Inform 18 (2002), 105-108.
- [8]. M.S. Rathore and N. Usha Rani., Fixed point theorems in metric spaces for weak **commuting mapping, Varahmihir Journal of Mathematical Sciences 1 (2001), 179-189.
- [9]. B. Singh and S. Jain, Semi compatibility and fixed point theorems in fuzzy metricspace using implicit relation, International Journal of Mathematics and MathematicalSciences, 16 (2005), 2617-2629.
- [10] Suman Jain ,Bhawana Mundra and Sangita Aske,Common fixed point theorem in fuzzy metric space using implicit reliation ,International Mathematical forum ,4(2009),(3),135-141
- [11]. R.Vasuki, Common fixed point theorem in a fuzzy metric space, Fuzzy Sets and Systems, 97 (1998), 395-397.
- [12]. R. Vasuki., Common fixed point for R- weakly commuting maps in fuzzy metricspaces, Indian J. Pure and Applied Mathematics (1999), 419-423.

BIOGRAPHIES

P. Srikanth Rao received the B.Sc, M.Sc. and Ph.D .degree in Mathematics from the Osmania University, Hyderabad, India , in 1989 ,1991 and 2009, respectively. He is currently a Professor in Mathematics with the B.V. Raju Institute of Technology, J.N.T. University, Narsapur, Telangana, India. He is recognized research guide for JNTU, Hyderabad, Telengana and Rayalaseema University, Andhra Pradesh, India He published over 16 research papers in international journals, conferences, and attended many workshops. One of his student awarded Ph.D and one student in M. Phil and He is guiding three Ph.D and two M.Phil students now.

T Rakesh Singh received the B.Sc degree from Osmania University, Hyderabad, Indi in 2002 and M.Sc. from Kakatiya University in 2004 .M.Tech in Computer Science from J.N.T. University, Hyderabad, India in 209. He is present he is pursuing Ph.D from JNT University, Hyderabad, India under guidance of Dr. P Srinkath Rao, He is currently a Assistant Professor in Mathematics with the Aurora's Technological and Research University, Hyderabad, Telangana, India. His research interest includes Fuzzy metrics space, Network Security, Computer Networks.